64 research outputs found

    Swirling around filaments: are large-scale structure vortices spinning up dark halos?

    Full text link
    The kinematic analysis of dark matter and hydrodynamical simulations suggests that the vorticity in large-scale structure is mostly confined to, and predominantly aligned with their filaments, with an excess of probability of 20 per cent to have the angle between vorticity and filaments direction lower than 60 degrees relative to random orientations. The cross sections of these filaments are typically partitioned into four quadrants with opposite vorticity sign, arising from multiple flows, originating from neighbouring walls. The spins of halos embedded within these filaments are consistently aligned with this vorticity for any halo mass, with a stronger alignment for the most massive structures up to an excess of probability of 165 per cent. On large scales, adiabatic/cooling hydrodynamical simulations display the same vorticity in the gas as in the dark matter. The global geometry of the flow within the cosmic web is therefore qualitatively consistent with a spin acquisition for smaller halos induced by this large-scale coherence, as argued in Codis et al. (2012). In effect, secondary anisotropic infall (originating from the vortex-rich filament within which these lower-mass halos form) dominates the angular momentum budget of these halos. The transition mass from alignment to orthogonality is related to the size of a given multi-flow region with a given polarity. This transition may be reconciled with the standard tidal torque theory if the latter is augmented so as to account for the larger scale anisotropic environment of walls and filaments.Comment: 17 pages, 19 figures, 3 tables. accepted for publication in MNRA

    Why do extremely massive disc galaxies exist today?

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society, Volume 494, Issue 4, June 2020, Pages 5568–5575, https://doi.org/10.1093/mnras/staa970. ©: 2020 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Galaxy merger histories correlate strongly with stellar mass, largely regardless of morphology. Thus, at fixed stellar mass, spheroids and discs share similar assembly histories, both in terms of the frequency of mergers and the distribution of their mass ratios. Since mergers are the principal drivers of disc-to-spheroid morphological transformation, and the most massive galaxies typically have the richest merger histories, it is surprising that discs exist at all at the highest stellar masses (e.g. beyond the knee of the mass function). Using Horizon-AGN, a cosmological hydro-dynamical simulation, we show that extremely massive (M*> 10^11.4 MSun) discs are created via two channels. In the primary channel (accounting for ~70% of these systems and ~8% of massive galaxies) the most recent, significant merger (stellar mass ratio > 1:10) between a massive spheroid and a gas-rich satellite `spins up' the spheroid by creating a new rotational stellar component, leaving a massive disc as the remnant. In the secondary channel (accounting for ~30% of these systems and ~3% of massive galaxies), a system maintains a disc throughout its lifetime, due to an anomalously quiet merger history. Not unexpectedly, the fraction of massive discs is larger at higher redshift, due to the Universe being more gas-rich. The morphological mix of galaxies at the highest stellar masses is, therefore, a strong function of the gas fraction of the Universe. Finally, these massive discs have similar black-hole masses and accretion rates to massive spheroids, providing a natural explanation for why a minority of powerful AGN are surprisingly found in disc galaxies.Peer reviewedFinal Published versio

    Intrinsic alignments of galaxies in the Horizon-AGN cosmological hydrodynamical simulation

    Get PDF
    The intrinsic alignments of galaxies are recognised as a contaminant to weak gravitational lensing measurements. In this work, we study the alignment of galaxy shapes and spins at low redshift (z∌0.5z\sim 0.5) in Horizon-AGN, an adaptive-mesh-refinement hydrodynamical cosmological simulation box of 100 Mpc/h a side with AGN feedback implementation. We find that spheroidal galaxies in the simulation show a tendency to be aligned radially towards over-densities in the dark matter density field and other spheroidals. This trend is in agreement with observations, but the amplitude of the signal depends strongly on how shapes are measured and how galaxies are selected in the simulation. Disc galaxies show a tendency to be oriented tangentially around spheroidals in three-dimensions. While this signal seems suppressed in projection, this does not guarantee that disc alignments can be safely ignored in future weak lensing surveys. The shape alignments of luminous galaxies in Horizon-AGN are in agreement with observations and other simulation works, but we find less alignment for lower luminosity populations. We also characterize the systematics of galaxy shapes in the simulation and show that they can be safely neglected when measuring the correlation of the density field and galaxy ellipticities.Comment: 20 pages, 23 figure

    Low-Surface-Brightness Galaxies are missing in the observed Stellar Mass Function

    Full text link
    We investigate the impact of the surface brightness (SB) limit on the galaxy stellar mass functions (GSMFs) using mock surveys generated from the Horizon Run 5 (HR5) simulation. We compare the stellar-to-halo-mass relation, GSMF, and size-stellar mass relation of the HR5 galaxies with empirical data and other cosmological simulations. The mean SB of simulated galaxies are computed using their effective radii, luminosities, and colors. To examine the cosmic SB dimming effect, we compute kk-corrections from the spectral energy distributions of individual simulated galaxy at each redshift, apply the kk-corrections to the galaxies, and conduct mock surveys based on the various SB limits. We find that the GSMFs are significantly affected by the SB limits at a low-mass end. This approach can ease the discrepancy between the GSMFs obtained from simulations and observations at 0.625≀z≀20.625\le z\le 2. We also find that a redshift survey with a SB selection limit of \left^e = 28 mag arcsec−2{}^{-2} will miss 20% of galaxies with M⋆g=109 M⊙M_\star^g=10^{9}~{\rm M_\odot} at z=0.625z=0.625. The missing fraction of low-surface-brightness galaxies increases to 50%, 70%, and 98% at z=0.9z=0.9, 1.1, and 1.9, respectively, at the SB limit.Comment: 27 pages, 30 figures, accepted for publication in Ap

    The mean state and variability of the North Atlantic circulation: a perspective from ocean reanalyses

    Get PDF
    The observational network around the North Atlantic has improved significantly over the last few decades with subsurface profiling floats and satellite observations, and the recent efforts to monitor the Atlantic Meridional Overturning Circulation (AMOC). These have shown decadal timescale changes across the North Atlantic including in heat content, heat transport and the circulation. However there are still significant gaps in the observational coverage. Ocean reanalyses integrate the observations with a dynamically consistent ocean model and can be used to understand the observed changes. However the ability of the reanalyses to represent the dynamics must also be assessed. We use an ensemble of global ocean reanalyses to examine the time mean state and interannual‐decadal variability of the North Atlantic ocean since 1993. We assess how well the reanalyses are able to capture processes and whether any understanding can be gained. In particular we examine aspects of the circulation including convection, AMOC and gyre strengths, and transports. We find that reanalyses show some consistency, in particular showing a weakening of the subpolar gyre and AMOC at 50oN from the mid‐90s until at least 2009 (related to decadal variability in previous studies), a strengthening and then weakening of the AMOC at 26.5oN since 2000, and impacts of circulation changes on transports. These results agree with model studies and the AMOC observations at 26.5oN since 2005. We also see less spread across the ensemble in AMOC strength and mixed layer depth, suggesting improvements as the observational coverage has improved

    Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios

    Get PDF
    The Mediterranean climate is expected to become warmer and drier during the twenty-first century. Mediterranean Sea response to climate change could be modulated by the choice of the socio-economic scenario as well as the choice of the boundary conditions mainly the Atlantic hydrography, the river runoff and the atmospheric fluxes. To assess and quantify the sensitivity of the Mediterranean Sea to the twenty-first century climate change, a set of numerical experiments was carried out with the regional ocean model NEMOMED8 set up for the Mediterranean Sea. The model is forced by air–sea fluxes derived from the regional climate model ARPEGE-Climate at a 50-km horizontal resolution. Historical simulations representing the climate of the period 1961–2000 were run to obtain a reference state. From this baseline, various sensitivity experiments were performed for the period 2001–2099, following different socio-economic scenarios based on the Special Report on Emissions Scenarios. For the A2 scenario, the main three boundary forcings (river runoff, near-Atlantic water hydrography and air–sea fluxes) were changed one by one to better identify the role of each forcing in the way the ocean responds to climate change. In two additional simulations (A1B, B1), the scenario is changed, allowing to quantify the socio-economic uncertainty. Our 6-member scenario simulations display a warming and saltening of the Mediterranean. For the 2070–2099 period compared to 1961–1990, the sea surface temperature anomalies range from +1.73 to +2.97 °C and the SSS anomalies spread from +0.48 to +0.89. In most of the cases, we found that the future Mediterranean thermohaline circulation (MTHC) tends to reach a situation similar to the eastern Mediterranean Transient. However, this response is varying depending on the chosen boundary conditions and socio-economic scenarios. Our numerical experiments suggest that the choice of the near-Atlantic surface water evolution, which is very uncertain in General Circulation Models, has the largest impact on the evolution of the Mediterranean water masses, followed by the choice of the socio-economic scenario. The choice of river runoff and atmospheric forcing both have a smaller impact. The state of the MTHC during the historical period is found to have a large influence on the transfer of surface anomalies toward depth. Besides, subsurface currents are substantially modified in the Ionian Sea and the Balearic region. Finally, the response of thermosteric sea level ranges from +34 to +49 cm (2070–2099 vs. 1961–1990), mainly depending on the Atlantic forcing

    The Copernicus Marine Environment Monitoring Service Ocean State Report

    Get PDF
    The Copernicus Marine Environment Monitoring Service (CMEMS) Ocean State Report (OSR) provides an annual report of the state of the global ocean and European regional seas for policy and decision-makers with the additional aim of increasing general public awareness about the status of, and changes in, the marine environment. The CMEMS OSR draws on expert analysis and provides a 3-D view (through reanalysis systems), a view from above (through remote-sensing data) and a direct view of the interior (through in situ measurements) of the global ocean and the European regional seas. The report is based on the unique CMEMS monitoring capabilities of the blue (hydrography, currents), white (sea ice) and green (e.g. Chlorophyll) marine environment. This first issue of the CMEMS OSR provides guidance on Essential Variables, large-scale changes and specific events related to the physical ocean state over the period 1993–2015. Principal findings of this first CMEMS OSR show a significant increase in global and regional sea levels, thermosteric expansion, ocean heat content, sea surface temperature and Antarctic sea ice extent and conversely a decrease in Arctic sea ice extent during the 1993–2015 period. During the year 2015 exceptionally strong large-scale changes were monitored such as, for example, a strong El Niño Southern Oscillation, a high frequency of extreme storms and sea level events in specific regions in addition to areas of high sea level and harmful algae blooms. At the same time, some areas in the Arctic Ocean experienced exceptionally low sea ice extent and temperatures below average were observed in the North Atlantic Ocean

    The Role of diapycnal mixing in coupled atmosphere-ocean general circulation models

    No full text
    The value of ocean diapycnal diffusivity (v) sets the rate at which dense bottom water can be mixedup through the stratified water column and thus plays an important role in the meridional overturningcirculation (MOC). Previous idealised experiments and simplified theory suggest that the strength ofthe MOC and the ocean heat transport scale with the v. This study investigates the dependence ofthe MOC and other parameters on v using atmosphere-ocean general circulation models (AOGCM).Firstly, the dependence of the MOC strength on v is studied using a low resolution AOGCM withrealistic geometry, FORTE, with spatially constant v values ranging from 0.1 cm2/s to an unrealistichigh value of 5 cm2/s. At the cyclostationary state, global MOC strength is found to scale with v(in agreement with previous studies) according to a power law of 0.5. No power law is found for theMOC in the individual basins. The increase in MOC strength in the Atlantic and Pacific Oceans isassociated with an increase in the ocean heat transport. The atmosphere responds to the change inthe ocean state by a decrease of its energy transport and surface winds. Only a partial compensationis found between the ocean and atmosphere energy transport. The strength of v is found to have astrong impact on coupled phenomena, such as a cessation of El Niño at high v.Secondly, similar experiments are conducted with a state-of-the-art AOGCM, ECHAM5/ MPIOM.In this model, v is derived from a constant background diapycnal diffusion (b), wind inducedmixing, the Richardson number and the convective adjustment. A set of 3 coupled experiments isconducted, with b = 0.1, 0.25 and 1 cm2/s. The scaling law from simple theory and the previousexperiments with FORTE is not observed with this coupled model. At the cyclostationary state, theMOC strength weakens by 16% as b increases from 0.1 to 1 cm2/s. This behavior is not foundwhen the experiments are repeated with an ocean-only model. The reduction in MOC in the coupledmodel is linked to a strong reduction in the convective mixing at high latitudes. The convectivemixing is reduced by a continuous strong freshening in the Arctic region due to an increase in surfaceair temperature and melting of the sea-ice in the coupled experiments, which is not observed in theocean-only experiments.The responses of the two coupled models show many similarities as b increases. Both modelsshow convection in the Pacific for high values of b. The main difference is the response of the MOCin the Atlantic is linked to the different locations of the deep convection and their relative changes inthe models.I conclude that the diapycnal mixing and the ocean-atmosphere interactions both control the strengthof the MOC, and their influences cannot be considered separately
    • 

    corecore